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ANALYZING OR EXPLAINING BETA
DIVERSITY? COMMENT

Etienne Laliberté1

Tuomisto and Ruokolainen (2006; hereafter referred

to as TR) have recently argued that there has been

confusion about what statistical approaches, ‘‘raw data’’

or ‘‘distance,’’ are more appropriate when testing

hypotheses about the origin and maintenance of beta

diversity. They also argued that ‘‘inconsistencies and

errors in [the] recommendations’’ of Legendre et al.

(2005; hereafter referred to as LBP) gave way to more

confusion on this issue. Essentially, TR stated that both

the raw-data and distance approaches were appropriate,

but targeted different predictions and should therefore

be seen as complementary. However, TR’s method of

variation partitioning on distance matrices is based on

an inaccurate definition of spatial autocorrelation,

which makes the ‘‘spatial’’ fraction meaningless. Conse-

quently, that method is unable to quantify the relative

contribution of neutral processes to beta diversity. In

any case, TR have provided no answer to the doubts

expressed by LBP over the mathematical validity of

variation partitioning on distance matrices, and simply

claimed that as their method targeted a ‘‘different
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response variable’’ than the raw-data approach, its use

was justified. Finally, the recommendation of TR that

the distance approach is the only appropriate approach

for testing Hubbell’s (2001) neutral theory is incorrect.

Here I will discuss these issues in more detail.

What is spatial autocorrelation?

In their Ecological vs. statistical hypotheses section (p.

2703), TR describe the predictions of the neutral model

as follows:

Community composition is heterogeneous over the

landscape at all spatial scales as a result of the

cumulative effects of spatially autocorrelated random

walk in species abundances. This spatial structure is

entirely due to autocorrelation, and spatial dependence

on underlying environmental variables is not present.

While their description of the neutral model is accurate,

the statistical prediction they derive from it is that (p.

2703):

From [the neutral] hypothesis (. . .) it follows that two

nearby sites should share more species in more similar

abundances than two sites further apart.

That statistical prediction is inaccurate because spatial

autocorrelation is not defined as the tendency of two

nearby sites to be more similar than faraway sites (which

would imply a simple monotonic decrease of similarity

with increasing geographic distance), but is instead

defined as ‘‘the property of random variables taking

values, at pairs of locations a certain distance apart, that

are more similar (positive autocorrelation) or less similar

(negative autocorrelation) than expected for randomly

associated pairs of observations’’ (Legendre 1993). A

more formal and mathematically satisfying definition of

spatial autocorrelation is ‘‘the lack of independence [. . .]

among the error components of field data, due to

geographic proximity’’ (Legendre and Legendre 1998:9).

This distinction may appear trivial, yet it has

important implications in the present debate. Even

though random neutral processes may create spatial

autocorrelation in the vegetation data and lead to a

monotonic decrease in similarity (or conversely, to an

increase in dissimilarity) with increasing geographic

distance when there is species turnover (i.e., replace-

ment) across a sampled transect or surface, this is not

necessarily so, for instance, in the case of ubiquitous

species. Simply put, there is no clear and unambiguous

link between spatial autocorrelation and similarity decay

with distance. Consequently, regressing community

composition dissimilarity on geographical distances

(log-transformed or not) to quantify the contribution

(using R2) of neutral processes to variation of beta

diversity between pairs of sites, which is the goal of TR’s

method of variation partitioning on distance matrices, is

fundamentally incorrect. While such a regression is often

used in similarity decay plots to fit a particular model

(Nekola and White 1999), the coefficient of determina-

tion (R2) should be interpreted as nothing more than a

simple measure of the adjustment of that model to the

data.

It is important here to distinguish two research

questions: The objective of variation partitioning (either

in the raw-data approach or in TR’s variation parti-

tioning on distance matrices) is not to quantify the

strength of spatial autocorrelation in the data (which can

be calculated through Mantel correlograms), but to

quantify its relative contribution to the overall pattern.

There is no link between the strength of spatial

autocorrelation and its relative contribution to beta

diversity. For example, spatial autocorrelation can be

small (i.e., low Mantel r in an autocorrelogram) yet

explain most of the variation of community composition

if all of this variation is spatially structured and there is

no dependence on environmental variables. In any case,

the R2 of a logarithmic similarity-decay curve is neither

related to the strength or relative contribution of spatial

autocorrelation to beta diversity.

Neutral theory and similarity decay plots

TR’s statistical prediction to test the neutral model in

the context of variation partitioning on distance

matrices appears to stem from a direct, yet unfounded,

extension of Hubbell’s (2001) use of similarity decay

plots (Nekola and White 1999) to test neutral theory. In

chapter seven of his seminal monograph, Hubbell

predicted that under neutral ecological drift community

composition similarity across the landscape will decrease

logarithmically with geographical distance, because at

such scales dispersal limitation leads to clumped species

distributions, and therefore to high species turnover.

The similarity decay with distance is greatly influenced

by grain size (i.e., resolution) and spatial extent (i.e.,

area), with the best relationships observed with large

grain sizes and spatial extents (Nekola and White 1999).

Indeed, a decay of similarity will be detected only if the

variation due to grain size is smaller than the variation

due to spatial extent (Nekola and White 1999), a

condition rarely met from censuses conducted at local

scales. As such, Hubbell used similarity decay plots to

make predictions about the importance of neutrality on

beta diversity only at broad spatial scales (i.e., biogeo-

graphical scales), and these predictions are based on the

functional form of the decay curve, not through variation

partitioning between geographical and environmental

distances. Hubbell argued that, since neutral theory

predicts that similarity decay happens on environmen-

tally homogeneous landscapes, the decay curve should

be smooth (i.e., logarithmic) and only depend on the

fundamental biodiversity number h and dispersal rate m

(Hubbell 2001). On the other hand, under niche-

assembly theory, similarity decay results from species
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FIG. 1. Two cases of neutral communities. (A) Abundances of 10 species along a 100-m transect; only three species are shown
on the graph for clarity. Data for each species were generated from a series of random numbers (one every meter) between 0 and
100 taken from a standard normal distribution, to which spatial autocorrelation was added by computing moving averages
(window width¼ 5, i.e., the value plus the two neighbors on either side). (B) Abundances of 10 species along a 100-m transect; only
the first nine species are shown. Data for each species were generated the same way as in panel (A), with the exception that species
turnover along the transect was added by restricting the first nine species to limited but overlapping parts of the transect. (C)
Mantel correlogram associated with panel (A). Hellinger distance was used for calculating community composition dissimilarity.
Black squares indicate significant spatial autocorrelation after progressive Bonferroni correction (a ¼ 0.05, 999 permutations).
Positive Mantel r values express positive spatial autocorrelation. (D) Mantel correlogram associated with panel (B); see description
of panel (C) for explanation. (E) Relationship between community composition dissimilarity (Hellinger distance) and geographical
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turnover along environmental gradients or habitats; the

associated similarity decay will not be smooth because

habitats are typically patchy, recurrent, and have sharp

boundaries (Hubbell 2001).

This neutral prediction should be restricted to the

interpretation of broad-scale patterns in similarity decay

plots, yet TR erroneously extend it to all spatial scales

and use a matrix of log-transformed geographical

distances to quantify the contribution of neutral

processes in variation partitioning on distance matrices

from any sampling design, regardless of grain size and

spatial extent. Such a method, on top of being

mathematically doubtful, can greatly underestimate the

importance of neutral processes when many or all

species are ubiquitous, which can often happen at local

spatial scales or in species-poor systems. Again, this is

because there is no clear link between spatial autocor-

relation and distance decay of similarity. I will show this

through the simple following numerical example.

A simple numerical example

Let us imagine a transect where environmental

conditions are completely homogeneous throughout,

so that no variation in community composition can be

attributed to environmental control. Ten species are

found along the 100-m transect (note that it could very

well be 100 mm, cm, or km), but in two different

arrangements (Fig. 1A, B; for clarity, not all species are

shown on the graphs). In Fig. 1A, abundance data were

generated from a series a 100 random numbers between

0 and 100 taken from a standard normal distribution,

from which spatial autocorrelation was added by

computing moving averages (window width ¼ 5, i.e.,

the value plus the two neighbors on either side). In Fig.

1B, the exact same procedure was followed, with the

exception that species turnover was added by restricting

the first nine species to limited but overlapping parts of

the transect. Thus, in both cases, variation of commu-

nity composition is entirely due to random but spatially

autocorrelated walks in species abundances, a purely

neutral process. As it can be seen from Mantel correlo-

grams (Fig. 1C, D), there is significant spatial autocor-

relation in community composition at several distance

classes in both cases.

This simple numerical example shows that when

spatial autocorrelation leads to gradual species turnover

(Fig. 1B), which is frequently observed at broader

spatial scales, a good relationship between community

composition dissimilarity and geographical distance (the

inverse of a similarity decay plot) can be found (Fig. 1F).

Conversely, when species are ubiquitous (Fig. 1A), such

a relationship is very much weaker (Fig. 1E).

By extending this to the context of variation

partitioning, as TR suggest, one would partition the

variation of beta diversity between pairs of sites (i.e., the

response matrix) between a matrix of environmental

distances (representing the environmental control mod-

el) and a matrix of log-transformed geographical

distances (representing the neutral model). I must stress

that I do not support the use of this method given that

serious doubts have been expressed over its mathemat-

ical validity. Indeed, perhaps the main problem with

variation partitioning on distances matrices is that the

isolated fractions are not additive. Surprisingly, TR

appear to be aware of this fact, as they mention (p. 2707)

that in this method, ‘‘R2 values will change depending on

[. . .] whether all environmental variables are combined

into a single distance matrix or used in separate

matrices.’’ This seriously undermines the credibility of

the method itself, as it is very much unclear how the R2

coefficients should be interpreted if the fractions

themselves are not additive. Another problem concerns

the potential, albeit unknown, effects of the lack of

independence among the distances on the coefficients

themselves (Legendre et al. 2005:442). Still, I will assume

here that the method is valid (which clearly remains to

be shown) and use it nonetheless to illustrate that on top

of being doubtful, this method also greatly underesti-

mates the contribution of neutral processes.

In that numerical example, environmental conditions

are identical throughout the transect, so the environ-

mental matrix would be filled with constant values and

would explain none of the variation of beta diversity.

Therefore, the contribution of neutral processes to

variation of beta diversity, as suggested by TR, would

then simply be expressed by the coefficients of determi-

nation of the logarithmic relationships shown in Fig.

1E, F. This would lead one to conclude that in Fig. 1A,

,5% (taken from the R2 of the logarithmic model) of the

observed pattern was due to neutrality, whereas in Fig.

1B, ;77% of the pattern would be attributed to neutral

processes. Such conclusions are obviously inaccurate

given that, in both cases, patterns were entirely due to

random, spatially autocorrelated walks in abundances, a

purely neutral process. Here it is clear that using a

matrix of log-transformed geographical distances to

quantify the contribution of neutral processes can

greatly underestimate their actual importance, particu-

larly when most or all species are ubiquitous (e.g., Fig.

1A). Again, this is because spatial autocorrelation does

not necessarily imply, for multi-species data, that two

 
distance (i.e., inverse of a similarity-decay plot) from the data of panel (A). The curve shows the logarithmic relationship with its R2

value. (F) Relationship between community composition dissimilarity (Hellinger distance) and geographical distance from the data
of panel (B); see description of panel (E) for explanation.
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nearby sites will be more similar (multivariate similarity)

than two faraway sites, as suggested by TR’s statistical

prediction. In other words, TR use an inaccurate

statistical prediction to quantify the contribution of

neutral processes to variation of beta diversity, and to

test that prediction they propose and use a doubtful and

unvalidated statistical method.

Variation of beta diversity between pairs

of sites vs. between regions

TR argued that the distance approach targeted

different kinds of questions about beta diversity than

the raw-data approach, which they referred to as

different ‘‘levels of abstraction.’’ LBP had also used this

‘‘level of abstraction’’ concept and mentioned that one

could either be interested in studying the variation of

community composition among sites within a given

region (i.e., beta diversity), or in studying the variation

of beta diversity among groups of sites or regions.

However, variation partitioning on distance matrices, as

proposed by TR, focuses strictly on the variation of

dissimilarities between pairs of sites. Individual pairs of

dissimilarities taken alone do not give a measure of beta

diversity of a large area (Anderson et al. 2006).

Therefore, this method could not answer such questions

as: ‘‘Does beta diversity differ between different groups

of sites (i.e., that contain more than two sites) or

regions?’’ And, more importantly, ‘‘Why does beta

diversity vary between these groups of sites or regions?’’

Hence, even if variation partitioning on distance

matrices could accurately quantify the contribution of

spatial autocorrelation to the variation of beta diversity

among pairs of sites (which, as I have shown earlier, is

not the case), and even if its mathematical validity were

demonstrated (which remains to be done), it would still

be of limited practical use: Indeed, most ecologists that

are truly interested in studying the variation of beta

diversity among groups of sites or regions would likely

want to compare regions in which more than two sites

have been observed. A more appropriate way of

answering questions related to the variation of beta

diversity among groups of sites or regions would be to

use multivariate dispersion on distance matrices, a

method described by Anderson et al. (2006) to

specifically answer such questions.

Testing neutral theory: raw data or distances?

One of the main conclusions of TR was that Hubbell’s

(2001) neutral theory can only be tested using the

distance approach since its testable predictions are

stated in terms of distances and not raw data. Their

main argument against the use of the raw-data approach

to test neutral theory was that the detection of a

particular spatial pattern in community composition

through spatial modeling techniques such as principal

coordinate analysis of neighbor matrices (PCNM;

Borcard and Legendre 2002) does not support neutral

theory because neutral theory does not predict that this

was the expected spatial pattern, and that any specific

spatial pattern is just as much in accordance with the

neutral model as long as the degree of spatial

autocorrelation is similar. I see no contradiction here.

I argue that the detection of a significant residual spatial

structure (i.e., after controlling for variation due to the

environmental variables) provides support for the

theory. This detection is quite easy using the raw-data

approach, unless TR can demonstrate that the neutral

model specifies a type of spatial autocorrelation that

cannot be modelled by PCNM analysis. Given that

previous simulation work has shown that PCNM

analysis could accurately model a wide range of spatial

structures, including spatially autocorrelated data (Bor-

card and Legendre 2002), such a demonstration appears

unlikely.

The PCNM approach is closely related to spatial

autocorrelation structure functions, and essentially

consists in extracting from a predetermined spatial

matrix the eigenvectors that maximize Moran’s index

of spatial autocorrelation (I ); the resulting eigenvectors

describe global to local spatial structures and can thus

be used in regression to model spatial structures at all

spatial scales (Dray et al. 2006). Therefore, the raw-data

approach with PCNM uses explanatory variables that

can model spatially autocorrelated patterns across a

range of scales, and thus allows an accurate quantitative

assessment of the contribution of spatial autocorrelation

to variation in community composition. This is the exact

opposite conclusion of TR, who argued that ‘‘the raw-

data approach fails to address the neutral model in a

relevant way, and is unable either to falsify the neutral

hypothesis or to quantify its relative contribution to the

observed spatial pattern’’ (p. 2704).

Although both the raw-data and the distance ap-

proach can be used to test neutral theory, they both have

their respective domains of application. The raw-data

approach with PCNM has promising applications, since

it allows one to dissect the spatial structures of

community composition at different scales (Borcard

and Legendre 2002) and estimate the relative influence

of niche and neutral processes at each of these scales.

Such tests offer great opportunities for future tests of

neutral theory (McGill et al. 2006), especially consider-

ing that spatial scale has been suggested as a way to

reconcile empirical ecology with neutral models (Holy-

oak and Loreau 2006).

Still, as TR pointed out, a drawback of the raw-data

approach is that it can sometimes be hard to distinguish

between the relative importance of niche and neutral

processes on community patterns because spatial and

environmental variables often covary. The resulting

‘‘space-environment’’ fraction can either be interpreted

as a spatially structured environmental influence con-
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trolling abundance patterns or as neutral processes
acting within a heterogeneous environment (Bell et al.

2006). One way of minimizing that problem is to use a
sampling design that decouples the environmental and
geographical distances (Gilbert and Lechowicz 2004).

The ‘‘pure spatial’’ fraction may often be due to some
spatially structured unmeasured environmental vari-
ables, which can then lead to an overestimation of the

contribution of neutral processes. Hence, to use the raw-
data approach to test neutral theory, one must have
access to relevant, extensive, and accurately quantified

environmental data.
As for the distance approach, the use of similarity

decay plots is appropriate for identifying the best
functional form of a decay curve in a similarity-decay

plot: A smooth similarity-decay curve provides greater
support for neutral theory, whereas a ‘‘bumpy’’ curve
suggests that the environment exerts stronger control

over beta diversity (Hubbell 2001). A drawback of this
approach is that it only allows a qualitative assessment
of the dominant process (i.e., niche or neutrality), yet

does not allow one to quantify their relative importance.
Still, as this method does not require environmental
data, it can be particularly interesting when these are not

available.

Conclusion

Research on the origin and maintenance of beta

diversity has regained great attention since the publica-
tion of Hubbell’s theory. Much theoretical and empirical
work is currently under way to assess the relative

importance of niche and neutral processes on commu-
nity patterns. On the applied side, understanding the
origin and maintenance of beta diversity has important

implications for ecosystem management, such as the
design of nature reserves. Therefore, it is crucial that
researchers master the concepts and methods required
for testing hypotheses about how beta diversity is

maintained in ecosystems.
Throughout this comment I have stressed that an

abusive interpretation of the relationship between the

decay of similarity and spatial autocorrelation, as well as
an unfounded use of Mantel R2 values in the context of
variation partitioning, both proposed by TR, should be

avoided. Variation partitioning on distance matrices, in
addition to being mathematically doubtful and yet
unvalidated, is based on an inaccurate statistical

prediction to quantify the contribution of neutral
processes to variation of beta diversity.
The distance approach is appropriate for identifying

the best functional form of the similarity decay curve in

similarity decay plots. The raw-data approach, on the

other hand, is appropriate to partition the variation of

community composition between environmental and

spatial factors and can accurately quantify the contri-

bution of spatial autocorrelation to variation of

community composition among sites. In summary,

contrary to TR, who argued that only the distance

approach could be used to test neutral theory, both the

raw-data and the distance approaches are useful in

testing different neutral predictions about the origin and

maintenance of beta diversity. Yet, they both have their

domains of application and can thus be seen as

complementary.
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